In Vitro Studies of Bacterial Cellulose and Magnetic Nanoparticles Smart Nanocomposites for Efficient Chronic Wounds Healing
نویسندگان
چکیده
The quality of life of patients with chronic wounds can be extremely poor and, therefore, over the past decades, great efforts have been made to develop efficient strategies to improve the healing process and the social impact associated with these conditions. Cell based therapy, as a modern tissue engineering strategy, involves the design of 3D cell-scaffold bioconstructs obtained by preseeding drug loaded scaffolds with undifferentiated cells in order to achieve in situ functional de novo tissue. This paper reports on the development of bionanocomposites based on bacterial cellulose and magnetic nanoparticles (magnetite) for efficient chronic wounds healing. Composites were obtained directly in the cellulose bacterial culture medium by dispersing various amounts of magnetite nanoparticles during the biosynthesis process. After purification and drying, the membranes were characterized by Raman spectroscopy and X-ray diffraction to reveal the presence of magnetite within the bacterial cellulose matrix. Morphological investigation was employed through SEM and TEM analyses on bionanocomposites. The biocompatibility of these innovative materials was studied in relation to human adipose derived stem cells in terms of cellular morphology, viability, and proliferation as well as scaffolds cytotoxic potential.
منابع مشابه
Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds.
Bacterial infections, especially multidrug-resistant bacterial infections, are an increasingly serious problem in the field of wound healing. Herein, bacterial cellulose (BC) decorated by 4,6-diamino-2-pyrimidinethiol (DAPT)-modified gold nanoparticles (Au-DAPT NPs) is presented as a dressing (BC-Au-DAPT nanocomposites) for treating bacterially infected wounds. BC-Au-DAPT nanocomposites have be...
متن کاملThe effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice
Objective (s): Bacterial infection is an important cause of delayed wound healing. Staphylococcus aureus (S. aureus) is the main agent causing these infections. Zinc Oxide (ZnO) nanoparticles have antibacterial activity and also accelerate the wound healing process. The aim of the present study is to evaluate the effect of ZnO nanoparticles on bacterial load reduction of the wound infection. M...
متن کاملHealth technology assessment on super oxidized water for treatment of chronic wounds
Background: Super oxidized water (SOW), as a novel antiseptic solution, is used with claims of effectiveness and cost effectiveness in healing chronic wounds such as diabetic foot, infectious post-operative ulcers and burn ulcers. We conducted a health technology assessment to evaluate the clinical evidence from clinical and randomized trials for this disinfection. This study aims to evaluate t...
متن کاملNanoparticles in wound healing; from hope to promise, from promise to routine.
Chronic non-healing wounds represent a growing problem due to their high morbidity and cost. Despite recent advances in wound healing, several systemic and local factors can disrupt the weighed physiologic healing process. This paper critically reviews and discusses the role of nanotechnology in promoting the wound healing process. Nanotechnology-based materials have physicochemical, optical an...
متن کاملClinical trials on silver nanoparticles for wound healing (review)
Despite the prevalence of different kinds of wounds among people around the world, challenges ahead for managing wound healing continues. One of the most important issues for wound healing is infection that can delay healing process. Also, drug-resistant infections are growing as a worrying challenge in medicine. A lot of studies done over different methods to improve wound healing process, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015